Sarcoidosis:
Diagnostic challenges and
difficult clinical decisions

Dr Sarah Sasson
Clinical Immunology Registrar
22nd October 2015
Introduction to Sarcoidosis

• First described as a skin disorder in 1869
• Further descriptions of lymph-node disease lead to the proposed name “sarkoid” i.e. sarcoma-like
• Multi-system granulomatous disease of unknown aetiology.
• Lifetime prevalence 5-40/100 000 in Caucasians
 ➢ 3X higher in African Americans
• Typically presents <40 years
• ?Immune reaction to unknown antigen in genetically predisposed individual
Introduction to Sarcoidosis

• Activation of Th1 T-cells and production of IFNγ, TNFα, TGFβ, IL-2 and IL-12

• The immune response ultimately leads to the formation of granulomas that consist of a central core of mononuclear cells surrounded by CD4+ T-cells and a small number of CD8+ T-cells and B-cells

• *Non-caseating, non-necrotic granulomas are the histological hallmark*

• The disease can affect any organ symptoms but most frequently the LN and lungs. The majority of sarcoidosis with organ involvement are not life-threatening.
Introduction to Sarcoidosis
Cardiac Sarcoidosis
Cardiac Sarcoidosis

- Clinically evident in 2-7% of sarcoid patients but autopsy studies suggest cardiac sarcoid occurs in up to 25% of patients with sarcoidosis. More than 50% of these are subclinical.

- Most commonly affects:
 - Myocardium especially basal ventricular septum
 - LV free wall
 - Papillary muscles
 - RV

- Cardiac sarcoid accounts for 10-25% of all deaths from sarcoidosis
 - Need for recognition and intervention

Figure 1 | A well-formed non-necrotizing granuloma in the heart.
Cardiac Sarcoidosis: Epidemiology and Aetiology

- Prevalence unclear due to lack of standardised criteria
- M>F 3.4% vs. 1.7%
- Genetic association:
 - HLADRB1*1101 plus insecticide exposure
 - HLADQB1*0601, HLADRB1*1502, HLADQA1*0103 and HLADRB1*0803 in Japanese
 - Other studies have found HLA types that are protective
 - These studies have compared Cardiac sarcoid to healthy volunteers (not sarcoid patients with no cardiac involvement)
Cardiac Sarcoidosis: Presentation

- Asymptomatic
- Pre-syncope or syncope
- Atrial arrhythmias are increasingly recognised as early manifestation
- Ventricular dysfunction that is directly related to granulomatous infiltration
- 25% present with sudden cardiac death
- 65% of all cardiac sarcoid occurs without evidence of extra-cardiac sarcoidosis
Cardiac Sarcoidosis: Screening

- Current American Thoracic Society/European Respiratory Guidelines recommend screening for asymptomatic cardiac sarcoidosis in patients diagnosed with sarcoid in other organs:
 - Medical history and cardiac examination
 - 12-lead ECG (abnormal in <50% of pts with cardiac sarcoidosis) looking for fragmentation of QRS complex, LBBB and RBBB
 - Echocardiography (Sens 25%; Spec 95%)
 - Cannot detect infiltration; May see reduced LV function, wall motion abnormalities, increased LV wall thickness or thinning and aneurysm formation
- At present there is no biomarker used in the screening of cardiac sarcoidosis
 - ACE, lysozyme, urinary calcium levels, hstroponin and BNP are often elevated in patients with cardiac sarcoid but have low sensitivity.
Cardiac Sarcoidosis: Screening

Biopsy proven extra-cardiac sarcoidosis

Cardiac history, ECG, Echocardiogram

1. Symptom(s) positive (significant palpitations*/pre-syncope/syncope)
2. Abnormal ECG**
3. Abnormal Echocardiogram***

One or more of 1-3

Advanced cardiac Imaging
CMR and/or FDG-PET

None of 1-3

Negative – Low probability of cardiac sarcoidosis
Cardiac Sarcoidosis: Diagnostic Imaging

- Cardiac MRI with gadolinium (sens 76-100%; spec 78-92%)
 - Looking for the presence of delayed enhancement

Figure 3 | Cardiac MRI with evidence of delayed enhancement. The presence of delayed enhancement (arrows) is suggestive of cardiac sarcoidosis and scar tissue formation.
Cardiac Sarcoidosis: Diagnostic Imaging

- Cardiac FDG-PET (Sens 79-100%; Spec 38-100%
 - Pattern of focal uptake or focal on diffuse uptake are most consistent with cardiac sarcoidosis
 - Beware false negatives with BSL > 7.5 mmol/L

Figure 4 | Pattern of uptake on an ¹⁸F-fluorodeoxyglucose PET scan. a | No uptake. b | Patchy uptake. c | Diffuse uptake. d | Patchy on diffuse uptake.
Cardiac Sarcoidosis: Diagnostic Imaging

- Cardiac FDG-PET appears to have the highest sensitivity compared with other imaging modalities

<table>
<thead>
<tr>
<th>First author, year</th>
<th>Number of patients</th>
<th>Protocol</th>
<th>Sensitivity (%)</th>
<th>Specificity (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yamagishi, 19 2003</td>
<td>17</td>
<td>PET, > 5 h fast</td>
<td>82</td>
<td>NA</td>
</tr>
<tr>
<td>Okumura, 21 2004</td>
<td>22</td>
<td>PET, > 12 h fast</td>
<td>100</td>
<td>91</td>
</tr>
<tr>
<td>Ishimaru, 22 2005</td>
<td>32</td>
<td>PET, > 12 h fast</td>
<td>100</td>
<td>82</td>
</tr>
<tr>
<td>Ohira, 23 2008</td>
<td>21</td>
<td>PET, > 6 h fast, heparin</td>
<td>88</td>
<td>39</td>
</tr>
<tr>
<td>Langah, 24 2009</td>
<td>76</td>
<td>PET, > 18 h fast</td>
<td>85</td>
<td>90</td>
</tr>
<tr>
<td>Tahara, 25 2010</td>
<td>24</td>
<td>PET, > 12 h fast</td>
<td>100</td>
<td>46–97</td>
</tr>
<tr>
<td>Blankstein, 26 2014</td>
<td>118</td>
<td>PET, > 3 h fast, high fat low carb diet</td>
<td>71</td>
<td>45</td>
</tr>
<tr>
<td>Yousser, 27 2012</td>
<td>164 meta-analysis</td>
<td>Variable</td>
<td>90</td>
<td>78</td>
</tr>
<tr>
<td>Smedema, 28 2005</td>
<td>58</td>
<td>MRI</td>
<td>100</td>
<td>78</td>
</tr>
<tr>
<td>Ohira, 23 2008</td>
<td>21</td>
<td>MRI</td>
<td>75</td>
<td>77</td>
</tr>
<tr>
<td>Patel, 29 2009</td>
<td>81</td>
<td>Echocardiography</td>
<td>25</td>
<td>95</td>
</tr>
<tr>
<td>Mehta, 27 2008</td>
<td>62</td>
<td>67Ga</td>
<td>0–36</td>
<td>80–100</td>
</tr>
<tr>
<td></td>
<td></td>
<td>99Tc-sestamibi</td>
<td>13–80</td>
<td>92–100</td>
</tr>
</tbody>
</table>

- In a study of 21 pts who underwent both FDG-PET and CMRI
 - FDG-PET had Sens 87.5% Spec 38.5%
 - CMRI Sens 75% and Spec 76.9% using JWMH as gold std

Aggarwal et al Eur Heart J Card Imag 2015
Cardiac Sarcoidosis: Emerging role of combined FDG-PET and MRI

Cardiac MRI and PET likely image different pathophysiology of cardiac sarcoid. The strengths of each modality may be combined.

Aggarwal et al Eur Heart J Card Imag 2015
Cardiac Sarcoidosis: Diagnosis

- There is no standardised diagnostic criteria and none have supporting RCT evidence or prospective evaluation.
- Endomyocardial biopsies are low yield (sensitivity 25%) due to the patchy nature of disease and are associated with significant complications.

Expert Consensus Recommendations on Criteria for the Diagnosis of CS

There are 2 pathways to a diagnosis of Cardiac Sarcoidosis:

1. **Histological Diagnosis from Myocardial Tissue**
 - CS is diagnosed in the presence of non-caseating granuloma on histological examination of myocardial tissue with no alternative cause identified (including negative organismal stains if applicable).

2. **Clinical Diagnosis from Invasive and Non-Invasive Studies:**
 - It is probable* that there is CS if:
 a) There is a histological diagnosis of extra-cardiac sarcoidosis and
 b) One or more of the following is present
 - Steroid +/- immunosuppressant responsive cardiomyopathy or heart block
 - Unexplained reduced LVEF (< 40%)
 - Unexplained sustained (spontaneous or induced) VT
 - Mobitz type II 2nd degree heart block or 3rd degree heart block
 - Patchy uptake on dedicated cardiac PET (in a pattern consistent with CS)
 - Late Gadolinium Enhancement on CMR (in a pattern consistent with CS)
 - Positive gallium uptake (in a pattern consistent with CS)
 and
 c) Other causes for the cardiac manifestation(s) have been reasonably excluded.

*In general, "probable involvement" is considered adequate to establish a clinical diagnosis of CS.\(^{33}\)
Cardiac Sarcoidosis: Treatment

• Paucity if evidence based data; largely based on expert opinion

• Immunosuppressive therapy
 - Corticosteroids most common first line agent
 - Methotrexate second most common
 • One study found no difference LVEF or LVEDD between corticosteroids vs. corticosteroids and MTX over 5 years
 - Azathioprine and Mycophenolate have also been used
 - TNFα blockade has been reported in case studies but should only be used with caution if LVEF<35% as may worsen LV function
Cardiac Sarcoidosis: Treatment

• Cardiac specific therapy to manage heart failure and arrhythmias

• Implantable defibrillator therapy
 ➢ General cardiac guidelines are inadequate
 ➢ Class I indication for AICD for patients with cardiac sarcoidosis AND ventricular arrhythmias AND LVEF<35%
 ➢ Unnecessary shock occur in 10-30% of patients

• Antiarrhythmic therapy

• VT ablation

• Management of heart failure
 ➢ B-blockers
 ➢ ACEi

• Consideration for Heart transplant (1.5% of all transplants)
Cardiac Sarcoidosis: Prognosis

- Prognosis is closely related to LV function and patients with preserved LV function appear to have better prognosis with immunosuppression.

- One study showed that in patients with normal (>55%) or reduced (<30%) LV function this did not improve with immunosuppression while patients with moderate (30-54% LVEF) showed improved LV function with immunosuppression.

- Overall survival of patient with cardiac sarcoidosis:
 - 98% 1 year; 90% 5 years; 84% 10 years

- But survival rates if LV<30% are
 - 91% at 1 year; 57% at 5 years; 19% at 10 years
Neurosarcoidosis
Neurosarcoidosis: Introduction

• Emerging evidence of CNS involvement of sarcoidosis documented from 1948

• Rare disorder affecting 5-15% of patients with sarcoidosis
 - Incidence much higher in autopsy studies where 50% of cases were not detected ante mortem.
 - The majority (99%) have concomitant extra neural disease

• Is a differential for a number of neurological conditions:
 - Atypical meningitis
 - Cranial neuropathies
 - Myelopathy
 - Cerebral mass lesion
 - Headache
Neurosarcoidosis: Introduction

- No conclusive predisposing factors, triggers or demographics associated with the development of neurosarcoidosis.
- Difficult to diagnose and to treat
Neurosarcoidosis: Histopathology Findings

- Meningo-encephalitomyelitic infiltration resulting in focal or disseminated nodules or plaques with a tendency to affect basal meninges.

 ➢ Note: Multinucleated cells may be sparse in neurosarcoid and if present smaller than in sarcoid at other locations.

![Images of histopathological findings](Schwendimann et al Am J Ther 2013)
Neurosarcoidosis: Clinical Presentation

• Cranial Nerves
 - Facial Nerve (CNVII) most frequently affected and bilateral in 30% of cases
 - Optic neuritis also common
 - Anosmia and sensorineural hearing loss reported

• Intracranial Lesions
 - Parenchymal sarcoid lesions at any location
 - Common in hypothalamus/pituitary axis
 - Brainstem infiltration resulting in intractable hiccups, binocular diplopia, sudden death from autonomic dysfunction
Neurosarcoidosis: Clinical Presentation

• Spinal Cord Lesions
 - Myelopathy from intramedullary sarcoid lesions
 - Most prevalent in cervical spine
 - Average size 3.9 segments; Tends to affect older patients with more established disease

• Cerebrovascular events
 - May occur in the absence of atherosclerotic risk factors or embolic source
 - Granulomatous invasion of the cerebral vessel wall is not uncommon
Neurosarcoidosis: Diagnosis

- Challenging due to inaccessibility of tissue for biopsy
- Clinicians frequently default to extra-neural site for biopsy

Probable neurosarcoidosis is justified by:

1. Signs of neuroinflammation on imaging
 - Gadolinium enhancing MRI
 - May mimic MS
 - FDG PET
 - Superior to gallium-67
 - May help identify biopsy sites

2. Positive histology from extra neural site

3. And positive for 2 of:
 - Gallium scan
 - HRCT
 - BAL with elevated CD4:CD8 ratio >3.5 or >5 in CSF
Other biomarkers:
- CSF often shows T-cell pleocytosis and raised protein
- Emerging role for CSF soluble IL-2R
Neurosarcoidosis: Treatment

- Informed by case series only
- Corticosteroids is mainstay of treatment at 1mg/kg/day or 3-5 days of pulse methyl prednisone
- Systemic immunosuppression
 - Azathioprine
 - Methotrexate
 - Hydroxychloroquine
 - Cyclosporin A
 - Mycophenolate Moefetil
Neurosarcoidosis: Treatment

• In disease refractory to above measures:
 ➢ Anti-TNFα agents e.g. infliximab and adalimumab as an adjunctive treatment
 • TNFα plays a role in granulomata formation
 ➢ Case reports report successful use of Rituximab ?reduction in B-cell priming
 ➢ Trial of ustekinumab (anti-IL-17/22)
Neurosarcoidosis: Prognosis

- Overall prognosis for patients with neurosarcoidosis is less favourable than those without
 - 40% of patients with sarcoid optic neuritis had significant recovery following treatment
 - 73% of patients with spinal cord disease deteriorated over 18 months
- Patient with acute or subacute presentation appear to have better outcome than those with a insidious onset
- Better prognosis group appears to include patients with cranial neuropathy or aseptic meningitis.